Ranks and pregeometries in finite diagrams

نویسنده

  • Olivier Lessmann
چکیده

The study of classes of models of a finite diagram was initiated by S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class of models of the diagram D consists of the models of T which omit all the types not in D. In this work, we introduce a natural dependence relation on the subsets of the models for the No-stable case which share many of the formal properties of forking. This is achieved by considering a rank for this framework which is bounded when the diagram D is No-stable. We can also obtain pregeometries with respect to this dependence relation. The dependence relation is the natural one induced by the rank, and the pregeometries exist on the set of realizations of types of minimal rank. Finally, these concepts are used to generalize many of the classical results for models of a totally transcendental first-order theory. In fact, strong analogies arise: models are determined by their pregeometries or their relationship with their pregeometries; however the proofs are different, as we do not have compactness. This is illustrated with positive results (categoricity) as well as negative results (construction of nonisomorphic models).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualifying Exam Syllabus

Basic constructions: The completeness and compactness theorems. The Löwenheim-Skolem theorem. Omitting types. Ultraproducts. Indiscernible sequences. Nice properties: Saturation, homogeneity, and the monster model. Elimination of imaginaries and Meq. Quantifier elimination. Model completeness. Countably categorical theories. Stable theories: Characterizations of a stable formula. Stable, supers...

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

Reduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)

This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...

متن کامل

The ranks of the classes of $A_{10}$

‎Let $G $ be a finite group and $X$ be a conjugacy class of $G.$ The‎ ‎rank of $X$ in $G,$ denoted by $rank(G{:}X),$ is defined to‎ ‎be the minimal number of elements of $X$ generating $G.$ In this‎ ‎paper we establish the ranks of all the conjugacy classes of‎ ‎elements for simple alternating group $A_{10}$ using the structure‎ ‎constants method and other results established in‎ ‎[A.B.M‎. ‎Bas...

متن کامل

The geometry of Hrushovski constructions, I: The uncollapsed case

An intermediate stage in Hrushovski’s construction of flat strongly minimal structures produces ω-stable structures of rank ω. We analyze the pregeometries given by forking on the regular type of rank ω in these structures. A sequel will compare these to the pregeometries of the strongly minimal structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 106  شماره 

صفحات  -

تاریخ انتشار 2000